Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## [N-(2,5-Dichlorophenylsulfonyl)dithiocarbimato(2–)- $\kappa^2 S$ , S']bis(triphenylphosphine-*κP*)nickel(II)

### Celice Novais,<sup>a</sup> Silvana Guilardi,<sup>a</sup>\* Iterlandes Machado Jr<sup>b</sup> and Marcelo R. L. Oliveira<sup>b</sup>

<sup>a</sup>Instituto de Química, UFU, 38408-100, Uberlândia, MG, Brazil, and <sup>b</sup>Departamento de Química, UFV, 36571-000, Viçosa, MG, Brazil Correspondence e-mail: sguilardi@yahoo.com.br

Received 30 May 2007; accepted 18 June 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.047; wR factor = 0.123; data-to-parameter ratio = 19.0.

In the title complex,  $[Ni(C_7H_3Cl_2NO_2S_3)(C_{18}H_{15}P)_2]$ , a distorted cis-NiS<sub>2</sub>P<sub>2</sub> square-planar configuration around the Ni atom occurs due to the steric effect of the bulky triphenylphosphine ligands and the bidendate chelation by the two S atoms of the dithiocarbimate ligand. The crystal packing is stabilized by weak  $C_{ar} - H \cdots X$  (X = O and S) intermolecular interactions.

#### **Related literature**

For related literature, see: Allen et al. (1987); Cavell et al. (1998); Foulds et al. (1994); Franca et al. (2006); Oliveira et al. (2002, 2003); Orpen et al. (1989); Bruno et al. (2002).



#### **Experimental**

#### Crystal data

 $[Ni(C_7H_3Cl_2NO_2S_3)(C_{18}H_{15}P)_2]$ V = 8123.0 (2) Å<sup>3</sup>  $M_r = 883.43$ Z = 8Orthorhombic, Pbca Mo  $K\alpha$  radiation  $\mu = 0.88 \text{ mm}^{-1}$ a = 18.4654 (3) Å b = 15.2416 (2) Å T = 293 (2) K c = 28.8619 (5) Å  $0.20 \times 0.18 \times 0.03 \text{ mm}$   $R_{\rm int} = 0.063$ 

41274 measured reflections

9277 independent reflections

5597 reflections with  $I > 2\sigma(I)$ 

#### Data collection

```
Nonius KappaCCD diffractometer
Absorption correction: multi-scan
  (SORTAV; Blessing, 1995)
  T_{\min} = 0.844, \ T_{\max} = 0.974
```

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.047$ | 487 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.124$               | H-atom parameters constrained                              |
| S = 1.01                        | $\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 9277 reflections                | $\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$ |

#### Table 1 Selected geometric parameters (Å, °).

| 0        | -          |          |            |
|----------|------------|----------|------------|
| Ni-S1    | 2.2027 (8) | Ni-P1    | 2.2227 (8) |
| Ni-S2    | 2.2147 (8) | Ni-P2    | 2.2564 (8) |
| S1-Ni-S2 | 77.09 (3)  | S2-Ni-P2 | 90.00 (3)  |
| S1-Ni-P1 | 89.89 (3)  | P1-Ni-P2 | 103.02 (3) |

#### Table 2 Hydrogen-bond geometry (Å, °).

| ,                                                                          |              | ).                      |                        |                           |
|----------------------------------------------------------------------------|--------------|-------------------------|------------------------|---------------------------|
| $D - H \cdots A$                                                           | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - \mathbf{H} \cdots A$ |
| $\begin{array}{c} C36-H36\cdots S1^{i}\\ C34-H34\cdots O1^{ii}\end{array}$ | 0.93<br>0.93 | 2.8<br>2.57             | 3.641 (3)<br>3.194 (5) | 151<br>125                |
| $C41 - H41 \cdots O2^{iii}$                                                | 0.93         | 2.48                    | 3.197 (4)              | 134                       |

Symmetry codes: (i)  $-x - \frac{1}{2}$ ,  $y - \frac{1}{2}$ , z; (ii) -x,  $y - \frac{1}{2}$ ,  $-z + \frac{1}{2}$ ; (iii) x,  $-y + \frac{1}{2}$ ,  $z - \frac{1}{2}$ .

Data collection: COLLECT (Enraf-Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank Dr Javier Ellena of the Instituto de Física de São Carlos, Universidade de São Paulo, Brazil, for the X-ray data collection. This work was supported by FAPEMIG and CNPq.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2442).

#### References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.
- Cavell, R. G., Creed, B., Gelmini, L., Law, D. J., McDonald, R., Sanger, A. R. & Somogyvari, A. (1998). Inorg. Chem. 37, 757-763.

Enraf-Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Foulds, G. A., Bennet, A. M. A., Niven, M. I., Thorton, D. A., Cavell, K. J., Desjardins, S. & Peacock, E. J. J. (1994). Mol. Catal. 87, 117-136.
- Franca, E. F., Oliveira, M. R. L., Guilardi, S., Andrade, R. P., Lindemann, R. H., Amim, J. Jr, Ellena, J., De Bellis, V. M. & Rubinger, M. M. M. (2006). Polyhedron, 25, 2119-2126.

- Oliveira, M. R. L., Diniz, R., De Bellis, V. M. & Fernandes, N. G. (2003). Polyhedron, 22, 1561–1566.
- Oliveira, M. R. L., Vieira, H. P., Perpétuo, G. J., Janczak, J. & De Bellis, V. M. (2002). *Polyhedron*, **21**, 2243–2250.
- Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–71.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m1981-m1982 [doi:10.1107/S1600536807029844]

## $[N-(2,5-Dichlorophenylsulfonyl) dithiocarbimato(2-)-\kappa^2 S, S']$ bis(triphenylphosphine- $\kappa P$ )nickel(II)

### C. Novais, S. Guilardi, I. Machado Jr and M. R. L. Oliveira

#### Comment

We became interested in the syntheses and characterization of nickel(II) complexes with dithiocarbimates and phosphines due to their similarities with the dithiocarbimate compounds, which have shown catalytic activity, especially for oligomerization of olefins (Cavell *et al.*, 1998; Foulds *et al.*, 1994). As only the nickel complexes with general formulae Ni(RSO<sub>2</sub>N=CS<sub>2</sub>)(PPh<sub>3</sub>)<sub>2</sub> (R = 2-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>, 4-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub> and 4-BrC<sub>6</sub>H<sub>4</sub>) have had their structures determined by X-ray diffraction techniques (Oliveira *et al.*, 2002), the title compound (I) was prepared.

As shown in Fig. 1, the structure of (I) is composed of neutral Ni(2,5-Cl<sub>2</sub>C<sub>6</sub>H<sub>3</sub>SO<sub>2</sub>NCS<sub>2</sub>)(Ph<sub>3</sub>P)<sub>2</sub> complex molecules.

The Ni<sup>II</sup> atom is coordinated by two sulfur atoms from the dithiocarbimate anion and by two phosphorus atoms of the triphenylphosphine ligands into a distorted square-planar geometry. The small S—Ni—S angle is determined by the geometry of the chelate ligand, while the opposite P—Ni—P angle is rather large, probably due to the steric effect of the large triphenylphosphine ligands (Table 1). The two Ni—S bond lengths are not significantly different, although the two Ni—P distances are. The C—S [1.732 (3) and 1.722 (3) Å] bond lengths of the NCS<sub>2</sub> fragment are nearly equal and are much shorter than typical C—S single bonds [*ca* 1.81 Å]. The C<sub>1</sub>=N bond distance of 1.303 (3)Å is shorter than normal single  $C_{sp}^2$ —N<sub>sp</sub><sup>2</sup> bond length [*ca* 1.35 Å] and similar to that of the double bond C=N [1.275–1.300 Å] (Allen *et al.*, 1987; Orpen *et al.*, 1989). This behavior indicates that the electron density is delocalized over the entire NCS<sub>2</sub> moiety. Similar behavior is observed for related nickel complexes (Oliveira *et al.*, 2002; Oliveira *et al.*, 2003; Franca *et al.*, 2006). The repulsive interaction *cis* between the SO<sub>2</sub>(2,5-Cl<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) group and the S<sub>1</sub> atom, which are in greater position in relation to the C1—N bond, is responsible for the difference between the angles S1—C1—N [132.6 (2)°] and S2—C1—N [121.8 (2)°].

The torsion angle C1—N—S3—C2 describing the conformation of the ligands along the N—S3 bond is 85.1 (3)°. The  $C_{ar}$ — $C_{ar}$  bond lengths of the triphenylphosphine aromatic rings involved in the intermolecular interactions are shorter than typical values described in the literature[1.372–1.388 Å] (Allen *et al.*, 1987).

In the crystal structure of (I), the molecules are linked through C—H…O and C—H…S interactions (Table 2 and Fig. 2).

#### Experimental

The potassium dithiocarbimate dihydrate was prepared according to Franca *et al.*,(2006). The title compound was prepared in 30:20 ml e thanol:water mixture from nickel chloride hexahydrate (1.0 mmol), triphenylphosphine (2.0 mmol) and potassium 2,5-dichlorophenylsulfonyldithiocarbimate dihydrate (1.0 mmol) analogously as described in the literature for similar compounds (Oliveira *et al.*, 2002). Suitable crystals were obtained after slow evaporation of a solution of the compound in dichloromethane/ethanol (2:3 v/v). Elemental analysis: Found (calculated)%: C 56.77 (58.46), H 3.81 (3.76), N 1.54 (1.59) and Ni 6.79 (6.64). *M*.p. 175.0–176.5°C. IR (most important bands) (cm<sup>-1</sup>): 1449 v(C=N); 1312 v<sub>ass</sub>(SO<sub>2</sub>); 1153 v<sub>sym</sub>(SO<sub>2</sub>); 939 v<sub>ass</sub>(CS<sub>2</sub>) and 370 v(NiS).

## Refinement

All the H atoms were geometrically placed (C—H = 0.93 Å) and refined as riding with  $U_{iso}(H) = 1.2 U_{eq}(C)$ .

### **Figures**



Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.



Fig. 2. View of the C—H···S and C—H···O intermolecular interactions (broken lines) in (I).

# $[N-(2,5-Dichlorophenylsulfonyl) dithiocarbimato(2-)- \kappa^2 S, S'] bis(triphenylphosphine-\kappa P) nickel(II)$

| Crystal data                                                  |                                                 |
|---------------------------------------------------------------|-------------------------------------------------|
| $[Ni(C_7H_3Cl_2NO_2S_3)(C_{18}H_{15}P)_2]$                    | $F_{000} = 3632$                                |
| $M_r = 883.43$                                                | $D_{\rm x} = 1.445 {\rm ~Mg} {\rm ~m}^{-3}$     |
| Orthorhombic, Pbca                                            | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| Hall symbol: -P 2ac 2ab                                       | Cell parameters from 41144 reflections          |
| a = 18.4654 (3) Å                                             | $\theta = 2.9 - 27.5^{\circ}$                   |
| <i>b</i> = 15.2416 (2) Å                                      | $\mu = 0.88 \text{ mm}^{-1}$                    |
| c = 28.8619 (5) Å                                             | T = 293 (2) K                                   |
| $V = 8123.0 (2) \text{ Å}^3$                                  | Prism, brown                                    |
| Z = 8                                                         | $0.20\times0.18\times0.03~mm$                   |
|                                                               |                                                 |
| Data collection                                               |                                                 |
| Nonius KappaCCD<br>diffractometer                             | $R_{\rm int} = 0.063$                           |
| CCD rotation images, thick slices scans                       | $\theta_{\rm max} = 27.5^{\circ}$               |
| Absorption correction: multi-scan<br>(SORTAV; Blessing, 1995) | $\theta_{\min} = 2.9^{\circ}$                   |
| $T_{\min} = 0.844, \ T_{\max} = 0.974$                        | $h = -23 \rightarrow 22$                        |
| 41274 measured reflections                                    | $k = -17 \rightarrow 19$                        |
| 9277 independent reflections                                  | <i>l</i> = −28→37                               |
| 5597 reflections with $I > 2\sigma(I)$                        |                                                 |
|                                                               |                                                 |

### Refinement

Refinement on  $F^2$ 

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.047$   $wR(F^2) = 0.124$  S = 1.029277 reflections 487 parameters

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

H-atom parameters constrained

where  $P = (F_0^2 + 2F_c^2)/3$ 

 $(\Delta/\sigma)_{\rm max} = 0.031$ 

 $\Delta \rho_{\text{max}} = 0.44 \text{ e} \text{ Å}^{-3}$ 

 $\Delta \rho_{min} = -0.38 \text{ e} \text{ Å}^{-3}$ 

Extinction correction: none

 $w = 1/[\sigma^2(F_0^2) + (0.0606P)^2 + 0.6249P]$ 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x              | У            | Ζ             | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|----------------|--------------|---------------|---------------------------|
| Ni  | -0.108821 (19) | 0.29799 (2)  | 0.164898 (11) | 0.03513 (11)              |
| P2  | -0.17650 (4)   | 0.20227 (5)  | 0.12389 (2)   | 0.03769 (18)              |
| S1  | -0.05827 (4)   | 0.38162 (5)  | 0.21807 (2)   | 0.04220 (19)              |
| S2  | -0.16167 (5)   | 0.25340 (5)  | 0.22963 (2)   | 0.0505 (2)                |
| P1  | -0.04277 (4)   | 0.36360 (5)  | 0.11063 (2)   | 0.03681 (18)              |
| S3  | -0.07421 (5)   | 0.41888 (6)  | 0.33031 (3)   | 0.0564 (2)                |
| Cl1 | -0.23725 (6)   | 0.44726 (8)  | 0.37366 (4)   | 0.0924 (3)                |
| Cl2 | -0.09475 (9)   | 0.74289 (9)  | 0.25675 (7)   | 0.1463 (6)                |
| O2  | -0.07530 (15)  | 0.39752 (17) | 0.37835 (7)   | 0.0786 (8)                |
| 01  | -0.00420 (13)  | 0.43555 (16) | 0.31015 (8)   | 0.0709 (7)                |
| Ν   | -0.12051 (14)  | 0.34355 (16) | 0.30359 (8)   | 0.0505 (7)                |
| C26 | -0.26532 (16)  | 0.24552 (17) | 0.10822 (9)   | 0.0419 (7)                |
| C37 | -0.26867 (18)  | 0.0864 (2)   | 0.17204 (10)  | 0.0519 (8)                |
| H37 | -0.3068        | 0.1161       | 0.158         | 0.062*                    |
| C14 | 0.03409 (16)   | 0.29937 (19) | 0.09022 (9)   | 0.0416 (7)                |
| C27 | -0.29528 (18)  | 0.31181 (18) | 0.13457 (11)  | 0.0505 (8)                |
| H27 | -0.2686        | 0.3369       | 0.1585        | 0.061*                    |
| C1  | -0.11252 (16)  | 0.33135 (18) | 0.25921 (9)   | 0.0399 (7)                |
| C15 | 0.03301 (18)   | 0.2090 (2)   | 0.09561 (11)  | 0.0534 (8)                |
| H15 | -0.006         | 0.182        | 0.1102        | 0.064*                    |
| C8  | -0.00162 (17)  | 0.46596 (18) | 0.13038 (9)   | 0.0411 (7)                |
| C32 | -0.19791 (17)  | 0.10864 (18) | 0.16150 (9)   | 0.0416 (7)                |
| C39 | -0.14815 (18)  | 0.1978 (2)   | 0.02842 (10)  | 0.0517 (8)                |
| H39 | -0.1675        | 0.2542       | 0.0281        | 0.062*                    |
| C38 | -0.14443 (16)  | 0.15119 (18) | 0.07007 (9)   | 0.0411 (7)                |
|     |                |              |               |                           |

| С9  | 0.06137 (17)  | 0.4641 (2)   | 0.15675 (10)  | 0.0507 (8)  |
|-----|---------------|--------------|---------------|-------------|
| Н9  | 0.085         | 0.4111       | 0.1617        | 0.061*      |
| C25 | -0.16342 (18) | 0.42726 (18) | 0.06566 (11)  | 0.0519 (8)  |
| H25 | -0.183        | 0.4295       | 0.0953        | 0.062*      |
| C43 | -0.11539 (18) | 0.06701 (19) | 0.06948 (10)  | 0.0525 (8)  |
| H43 | -0.1124       | 0.0349       | 0.0968        | 0.063*      |
| C41 | -0.0948 (2)   | 0.0775 (2)   | -0.01238 (12) | 0.0689 (11) |
| H41 | -0.0782       | 0.0529       | -0.0399       | 0.083*      |
| C36 | -0.2827 (2)   | 0.0201 (2)   | 0.20334 (12)  | 0.0667 (10) |
| H36 | -0.3303       | 0.0057       | 0.2105        | 0.08*       |
| C20 | -0.09327 (16) | 0.39802 (18) | 0.05934 (9)   | 0.0417 (7)  |
| C35 | -0.2269 (3)   | -0.0250 (2)  | 0.22402 (11)  | 0.0677 (11) |
| H35 | -0.2367       | -0.0699      | 0.2449        | 0.081*      |
| C21 | -0.06526 (19) | 0.3956 (2)   | 0.01444 (10)  | 0.0583 (9)  |
| H21 | -0.018        | 0.3767       | 0.0094        | 0.07*       |
| C34 | -0.1570 (2)   | -0.0035 (2)  | 0.21386 (10)  | 0.0603 (9)  |
| H34 | -0.1192       | -0.0342      | 0.2276        | 0.072*      |
| C33 | -0.14217 (19) | 0.06362 (19) | 0.18324 (10)  | 0.0495 (8)  |
| H33 | -0.0943       | 0.0788       | 0.1771        | 0.059*      |
| C40 | -0.1235 (2)   | 0.1611 (2)   | -0.01208 (11) | 0.0641 (10) |
| H40 | -0.1261       | 0.1928       | -0.0395       | 0.077*      |
| C3  | -0.1939 (2)   | 0.5287 (2)   | 0.34238 (12)  | 0.0669 (10) |
| C29 | -0.40438 (19) | 0.3065 (2)   | 0.09024 (13)  | 0.0628 (9)  |
| H29 | -0.4507       | 0.3275       | 0.084         | 0.075*      |
| C13 | -0.03587 (19) | 0.5454 (2)   | 0.12431 (12)  | 0.0593 (9)  |
| H13 | -0.078        | 0.5486       | 0.1068        | 0.071*      |
| C12 | -0.0077 (3)   | 0.6202 (2)   | 0.14415 (15)  | 0.0856 (13) |
| H12 | -0.0315       | 0.6734       | 0.1402        | 0.103*      |
| C28 | -0.36505 (19) | 0.3412 (2)   | 0.12564 (13)  | 0.0606 (9)  |
| H28 | -0.3851       | 0.385        | 0.144         | 0.073*      |
| C31 | -0.30672 (18) | 0.2095 (2)   | 0.07258 (11)  | 0.0581 (9)  |
| H31 | -0.2878       | 0.1643       | 0.0546        | 0.07*       |
| C10 | 0.0891 (2)    | 0.5400 (3)   | 0.17565 (11)  | 0.0621 (10) |
| H10 | 0.1318        | 0.5379       | 0.1927        | 0.075*      |
| C24 | -0.2048 (2)   | 0.4534 (2)   | 0.02786 (15)  | 0.0700 (10) |
| H24 | -0.2519       | 0.4734       | 0.0323        | 0.084*      |
| C17 | 0.1492 (2)    | 0.1978 (3)   | 0.05903 (13)  | 0.0802 (12) |
| H17 | 0.1876        | 0.1637       | 0.0484        | 0.096*      |
| C19 | 0.09431 (18)  | 0.3380 (2)   | 0.06974 (11)  | 0.0574 (9)  |
| H19 | 0.0961        | 0.3986       | 0.0663        | 0.069*      |
| C4  | -0.2293 (2)   | 0.6077 (3)   | 0.33782 (15)  | 0.0851 (13) |
| H4  | -0.2738       | 0.6167       | 0.3523        | 0.102*      |
| C2  | -0.12607 (18) | 0.5160 (2)   | 0.32230 (11)  | 0.0547 (8)  |
| C42 | -0.0909 (2)   | 0.0307 (2)   | 0.02816 (11)  | 0.0643 (10) |
| H42 | -0.0716       | -0.0257      | 0.028         | 0.077*      |
| C30 | -0.37536 (19) | 0.2404 (2)   | 0.06382 (12)  | 0.0656 (10) |
| H30 | -0.4023       | 0.2163       | 0.0398        | 0.079*      |
| C22 | -0.1073 (3)   | 0.4210 (3)   | -0.02223 (12) | 0.0775 (12) |
| H22 | -0.0884       | 0.4185       | -0.0521       | 0.093*      |

| C18 | 0.1515 (2)  | 0.2872 (3) | 0.05452 (12)  | 0.0764 (11) |
|-----|-------------|------------|---------------|-------------|
| H18 | 0.1917      | 0.3138     | 0.0411        | 0.092*      |
| C7  | -0.0958 (2) | 0.5822 (3) | 0.29587 (12)  | 0.0699 (10) |
| H7  | -0.051      | 0.5741     | 0.2818        | 0.084*      |
| C16 | 0.0905 (2)  | 0.1588 (2) | 0.07918 (13)  | 0.0722 (11) |
| H16 | 0.0889      | 0.0981     | 0.0819        | 0.087*      |
| C5  | -0.1980 (3) | 0.6738 (3) | 0.31137 (17)  | 0.0919 (14) |
| Н5  | -0.2218     | 0.7272     | 0.3079        | 0.11*       |
| C6  | -0.1327 (3) | 0.6609 (3) | 0.29047 (16)  | 0.0864 (13) |
| C23 | -0.1763 (3) | 0.4497 (3) | -0.01572 (14) | 0.0790 (12) |
| H23 | -0.2041     | 0.4669     | -0.041        | 0.095*      |
| C11 | 0.0547 (3)  | 0.6171 (3) | 0.16952 (14)  | 0.0816 (12) |
| H11 | 0.0734      | 0.6682     | 0.1825        | 0.098*      |
|     |             |            |               |             |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|            | $U^{11}$    | $U^{22}$    | $U^{33}$     | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|------------|-------------|-------------|--------------|---------------|--------------|---------------|
| Ni         | 0.0387 (2)  | 0.0379 (2)  | 0.02878 (18) | -0.00171 (16) | 0.00288 (15) | -0.00028 (14) |
| P2         | 0.0394 (4)  | 0.0402 (4)  | 0.0334 (4)   | -0.0018 (3)   | 0.0043 (3)   | -0.0045 (3)   |
| <b>S</b> 1 | 0.0436 (5)  | 0.0507 (4)  | 0.0323 (4)   | -0.0052 (4)   | 0.0008 (3)   | -0.0028 (3)   |
| S2         | 0.0643 (6)  | 0.0518 (5)  | 0.0354 (4)   | -0.0143 (4)   | 0.0103 (4)   | -0.0024 (3)   |
| P1         | 0.0373 (4)  | 0.0401 (4)  | 0.0330 (4)   | -0.0005 (3)   | 0.0014 (3)   | 0.0018 (3)    |
| S3         | 0.0527 (5)  | 0.0816 (6)  | 0.0348 (4)   | 0.0103 (4)    | -0.0072 (4)  | -0.0117 (4)   |
| Cl1        | 0.0748 (7)  | 0.1148 (9)  | 0.0875 (7)   | 0.0109 (6)    | 0.0260 (6)   | -0.0013 (6)   |
| Cl2        | 0.1631 (15) | 0.0837 (9)  | 0.1921 (15)  | -0.0407 (9)   | -0.0270 (12) | 0.0282 (10)   |
| O2         | 0.0895 (19) | 0.116 (2)   | 0.0306 (11)  | 0.0289 (17)   | -0.0115 (12) | -0.0063 (12)  |
| 01         | 0.0446 (15) | 0.1049 (19) | 0.0631 (14)  | 0.0028 (13)   | -0.0065 (12) | -0.0231 (14)  |
| Ν          | 0.0566 (17) | 0.0619 (16) | 0.0329 (13)  | 0.0060 (14)   | 0.0042 (12)  | -0.0008 (12)  |
| C26        | 0.0423 (18) | 0.0439 (16) | 0.0394 (15)  | -0.0005 (14)  | 0.0034 (14)  | -0.0007 (13)  |
| C37        | 0.051 (2)   | 0.0528 (18) | 0.0520 (18)  | -0.0115 (16)  | 0.0086 (16)  | -0.0057 (15)  |
| C14        | 0.0406 (18) | 0.0492 (17) | 0.0351 (14)  | 0.0010 (14)   | 0.0006 (13)  | -0.0009 (13)  |
| C27        | 0.051 (2)   | 0.0460 (17) | 0.0545 (19)  | 0.0027 (16)   | 0.0006 (15)  | -0.0080 (15)  |
| C1         | 0.0403 (17) | 0.0435 (15) | 0.0357 (15)  | 0.0092 (13)   | 0.0023 (12)  | 0.0006 (13)   |
| C15        | 0.053 (2)   | 0.0528 (19) | 0.0541 (19)  | 0.0094 (16)   | -0.0067 (16) | 0.0001 (15)   |
| C8         | 0.0439 (18) | 0.0463 (16) | 0.0331 (14)  | -0.0062 (15)  | 0.0044 (13)  | 0.0025 (12)   |
| C32        | 0.050 (2)   | 0.0405 (15) | 0.0348 (15)  | -0.0060 (15)  | 0.0064 (13)  | -0.0075 (13)  |
| C39        | 0.064 (2)   | 0.0492 (18) | 0.0423 (17)  | -0.0053 (16)  | 0.0049 (16)  | -0.0046 (14)  |
| C38        | 0.0388 (17) | 0.0446 (17) | 0.0399 (16)  | -0.0074 (14)  | 0.0059 (13)  | -0.0060 (13)  |
| C9         | 0.046 (2)   | 0.060 (2)   | 0.0462 (18)  | -0.0042 (16)  | 0.0019 (15)  | 0.0051 (15)   |
| C25        | 0.054 (2)   | 0.0465 (17) | 0.0556 (19)  | 0.0008 (16)   | -0.0089 (16) | 0.0033 (15)   |
| C43        | 0.062 (2)   | 0.0534 (19) | 0.0424 (17)  | 0.0034 (16)   | 0.0089 (15)  | -0.0024 (15)  |
| C41        | 0.087 (3)   | 0.073 (2)   | 0.046 (2)    | 0.005 (2)     | 0.0177 (19)  | -0.0136 (18)  |
| C36        | 0.072 (3)   | 0.061 (2)   | 0.067 (2)    | -0.025 (2)    | 0.023 (2)    | -0.0069 (19)  |
| C20        | 0.0435 (19) | 0.0435 (16) | 0.0380 (15)  | -0.0059 (14)  | -0.0032 (13) | 0.0049 (13)   |
| C35        | 0.104 (3)   | 0.0481 (19) | 0.051 (2)    | -0.021 (2)    | 0.022 (2)    | 0.0010 (16)   |
| C21        | 0.058 (2)   | 0.076 (2)   | 0.0411 (17)  | -0.0096 (19)  | -0.0001 (15) | 0.0096 (16)   |
| C34        | 0.092 (3)   | 0.0468 (18) | 0.0424 (17)  | 0.0018 (19)   | 0.0033 (18)  | 0.0024 (15)   |
| C33        | 0.053 (2)   | 0.0535 (18) | 0.0419 (16)  | -0.0006 (16)  | 0.0078 (15)  | -0.0048 (15)  |

| C40 | 0.086 (3) | 0.064 (2)   | 0.0420 (18) | 0.002 (2)    | 0.0125 (17)  | 0.0024 (16)  |
|-----|-----------|-------------|-------------|--------------|--------------|--------------|
| C3  | 0.058 (2) | 0.078 (2)   | 0.065 (2)   | 0.004 (2)    | -0.0110 (18) | -0.0194 (19) |
| C29 | 0.047 (2) | 0.073 (2)   | 0.069 (2)   | 0.0107 (18)  | 0.0001 (18)  | 0.0132 (19)  |
| C13 | 0.058 (2) | 0.0492 (19) | 0.071 (2)   | 0.0044 (17)  | -0.0144 (18) | -0.0059 (17) |
| C12 | 0.101 (3) | 0.046 (2)   | 0.110 (3)   | 0.006 (2)    | -0.029 (3)   | -0.016 (2)   |
| C28 | 0.054 (2) | 0.0497 (19) | 0.078 (2)   | 0.0084 (17)  | 0.0094 (19)  | -0.0071 (18) |
| C31 | 0.049 (2) | 0.073 (2)   | 0.0522 (19) | 0.0042 (18)  | -0.0030 (16) | -0.0184 (17) |
| C10 | 0.058 (2) | 0.079 (3)   | 0.0494 (19) | -0.024 (2)   | -0.0110 (17) | 0.0016 (18)  |
| C24 | 0.055 (2) | 0.060 (2)   | 0.095 (3)   | -0.0007 (18) | -0.025 (2)   | 0.013 (2)    |
| C17 | 0.071 (3) | 0.108 (3)   | 0.061 (2)   | 0.042 (3)    | 0.005 (2)    | -0.007 (2)   |
| C19 | 0.056 (2) | 0.063 (2)   | 0.0533 (19) | 0.0029 (18)  | 0.0134 (16)  | 0.0000 (16)  |
| C4  | 0.064 (3) | 0.087 (3)   | 0.105 (3)   | 0.010 (3)    | -0.025 (2)   | -0.028 (3)   |
| C2  | 0.049 (2) | 0.066 (2)   | 0.0495 (18) | -0.0003 (17) | -0.0147 (16) | -0.0180 (17) |
| C42 | 0.083 (3) | 0.056 (2)   | 0.053 (2)   | 0.0124 (19)  | 0.0149 (18)  | -0.0098 (17) |
| C30 | 0.047 (2) | 0.096 (3)   | 0.054 (2)   | 0.000 (2)    | -0.0100 (16) | -0.009 (2)   |
| C22 | 0.095 (3) | 0.094 (3)   | 0.044 (2)   | -0.021 (3)   | -0.013 (2)   | 0.0176 (19)  |
| C18 | 0.057 (3) | 0.115 (3)   | 0.057 (2)   | 0.015 (2)    | 0.0179 (18)  | 0.000 (2)    |
| C7  | 0.066 (3) | 0.081 (3)   | 0.063 (2)   | -0.012 (2)   | -0.0185 (19) | -0.010 (2)   |
| C16 | 0.081 (3) | 0.064 (2)   | 0.071 (2)   | 0.033 (2)    | -0.011 (2)   | -0.0080 (19) |
| C5  | 0.084 (4) | 0.076 (3)   | 0.116 (4)   | 0.010 (3)    | -0.047 (3)   | -0.022 (3)   |
| C6  | 0.095 (4) | 0.064 (3)   | 0.100 (3)   | -0.017 (3)   | -0.039 (3)   | -0.004 (2)   |
| C23 | 0.082 (3) | 0.086 (3)   | 0.069 (3)   | -0.016 (2)   | -0.031 (2)   | 0.028 (2)    |
| C11 | 0.100 (3) | 0.060 (2)   | 0.085 (3)   | -0.025 (2)   | -0.019 (2)   | -0.013 (2)   |
|     |           |             |             |              |              |              |

Geometric parameters (Å, °)

| Ni—S1   | 2.2027 (8) | C36—C35 | 1.374 (5) |
|---------|------------|---------|-----------|
| Ni—S2   | 2.2147 (8) | С36—Н36 | 0.93      |
| Ni—P1   | 2.2227 (8) | C20—C21 | 1.396 (4) |
| Ni—P2   | 2.2564 (8) | C35—C34 | 1.363 (5) |
| P2—C26  | 1.824 (3)  | С35—Н35 | 0.93      |
| P2—C38  | 1.836 (3)  | C21—C22 | 1.369 (5) |
| P2—C32  | 1.836 (3)  | C21—H21 | 0.93      |
| S1—C1   | 1.732 (3)  | C34—C33 | 1.379 (4) |
| S2—C1   | 1.722 (3)  | С34—Н34 | 0.93      |
| P1-C14  | 1.822 (3)  | С33—Н33 | 0.93      |
| P1—C8   | 1.827 (3)  | C40—H40 | 0.93      |
| P1—C20  | 1.827 (3)  | C3—C4   | 1.376 (5) |
| S3—O2   | 1.425 (2)  | C3—C2   | 1.394 (5) |
| S3—O1   | 1.440 (3)  | C29—C28 | 1.360 (5) |
| S3—N    | 1.626 (3)  | C29—C30 | 1.373 (5) |
| S3—C2   | 1.779 (3)  | С29—Н29 | 0.93      |
| Cl1—C3  | 1.731 (4)  | C13—C12 | 1.377 (5) |
| Cl2—C6  | 1.732 (5)  | С13—Н13 | 0.93      |
| N—C1    | 1.303 (3)  | C12—C11 | 1.366 (6) |
| C26—C27 | 1.380 (4)  | C12—H12 | 0.93      |
| C26—C31 | 1.394 (4)  | C28—H28 | 0.93      |
| C37—C36 | 1.380 (4)  | C31—C30 | 1.376 (5) |
| C37—C32 | 1.384 (4)  | С31—Н31 | 0.93      |
|         |            |         |           |

| С37—Н37    | 0.93        | C10—C11     | 1.348 (5) |
|------------|-------------|-------------|-----------|
| C14—C15    | 1.386 (4)   | C10—H10     | 0.93      |
| C14—C19    | 1.390 (4)   | C24—C23     | 1.365 (5) |
| C27—C28    | 1.388 (5)   | C24—H24     | 0.93      |
| C27—H27    | 0.93        | C17—C16     | 1.367 (6) |
| C15—C16    | 1.391 (5)   | C17—C18     | 1.369 (5) |
| C15—H15    | 0.93        | С17—Н17     | 0.93      |
| C8—C13     | 1.378 (4)   | C19—C18     | 1.381 (5) |
| C8—C9      | 1.390 (4)   | С19—Н19     | 0.93      |
| C32—C33    | 1.387 (4)   | C4—C5       | 1.391 (6) |
| C39—C40    | 1.374 (4)   | C4—H4       | 0.93      |
| C39—C38    | 1.398 (4)   | C2—C7       | 1.382 (5) |
| С39—Н39    | 0.93        | С42—Н42     | 0.93      |
| C38—C43    | 1.391 (4)   | С30—Н30     | 0.93      |
| C9—C10     | 1.377 (4)   | C22—C23     | 1.360 (6) |
| С9—Н9      | 0.93        | C22—H22     | 0.93      |
| C25—C20    | 1.382 (4)   | C18—H18     | 0.93      |
| C25—C24    | 1.390 (4)   | С7—С6       | 1.387 (5) |
| С25—Н25    | 0.93        | С7—Н7       | 0.93      |
| C43—C42    | 1.390 (4)   | C16—H16     | 0.93      |
| C43—H43    | 0.93        | C5—C6       | 1.363 (6) |
| C41—C42    | 1.372 (5)   | С5—Н5       | 0.93      |
| C41—C40    | 1.380 (5)   | С23—Н23     | 0.93      |
| C41—H41    | 0.93        | C11—H11     | 0.93      |
| S1—Ni—S2   | 77.09 (3)   | C22—C21—C20 | 120.0 (4) |
| S1—Ni—P1   | 89.89 (3)   | C22—C21—H21 | 120       |
| S2—Ni—P1   | 166.98 (3)  | C20—C21—H21 | 120       |
| S1—Ni—P2   | 167.01 (3)  | C35—C34—C33 | 120.3 (4) |
| S2—Ni—P2   | 90.00 (3)   | С35—С34—Н34 | 119.9     |
| P1—Ni—P2   | 103.02 (3)  | С33—С34—Н34 | 119.9     |
| C26—P2—C38 | 103.50 (13) | C34—C33—C32 | 120.6 (3) |
| C26—P2—C32 | 103.53 (14) | C34—C33—H33 | 119.7     |
| C38—P2—C32 | 103.90 (12) | С32—С33—Н33 | 119.7     |
| C26—P2—Ni  | 113.22 (9)  | C39—C40—C41 | 120.6 (3) |
| C38—P2—Ni  | 122.64 (10) | C39—C40—H40 | 119.7     |
| C32—P2—Ni  | 108.16 (9)  | C41—C40—H40 | 119.7     |
| C1—S1—Ni   | 88.66 (10)  | C4—C3—C2    | 120.6 (4) |
| C1—S2—Ni   | 88.53 (10)  | C4—C3—Cl1   | 117.2 (3) |
| C14—P1—C8  | 103.64 (14) | C2—C3—Cl1   | 122.2 (3) |
| C14—P1—C20 | 106.85 (13) | C28—C29—C30 | 119.6 (3) |
| C8—P1—C20  | 102.70 (13) | C28—C29—H29 | 120.2     |
| C14—P1—N1  | 114.43 (9)  | C30—C29—H29 | 120.2     |
| C8—P1—N1   | 113.12 (9)  | C12—C13—C8  | 120.1 (3) |
| C20—P1—N1  | 114.85 (10) | C12—C13—H13 | 120       |
| 02—S3—O1   | 116.51 (15) | C8—C13—H13  | 120       |
| 02—83—N    | 107.03 (15) | C11—C12—C13 | 120.9 (4) |
| 01—83—N    | 113.89 (13) | C11—C12—H12 | 119.6     |
| O2—S3—C2   | 108.00 (15) | C13—C12—H12 | 119.6     |
| 01—S3—C2   | 106.50 (16) | C29—C28—C27 | 120.6 (3) |

| N—S3—C2     | 104.08 (14) | C29—C28—H28 | 119.7     |
|-------------|-------------|-------------|-----------|
| C1—N—S3     | 120.5 (2)   | C27—C28—H28 | 119.7     |
| C27—C26—C31 | 118.4 (3)   | C30—C31—C26 | 120.4 (3) |
| C27—C26—P2  | 119.2 (2)   | C30—C31—H31 | 119.8     |
| C31—C26—P2  | 122.2 (2)   | C26—C31—H31 | 119.8     |
| C36—C37—C32 | 120.0 (3)   | C11—C10—C9  | 120.4 (3) |
| С36—С37—Н37 | 120         | C11—C10—H10 | 119.8     |
| С32—С37—Н37 | 120         | С9—С10—Н10  | 119.8     |
| C15—C14—C19 | 118.7 (3)   | C23—C24—C25 | 119.9 (4) |
| C15—C14—P1  | 119.1 (2)   | C23—C24—H24 | 120       |
| C19—C14—P1  | 122.2 (2)   | C25—C24—H24 | 120       |
| C26—C27—C28 | 120.4 (3)   | C16—C17—C18 | 119.8 (4) |
| С26—С27—Н27 | 119.8       | C16—C17—H17 | 120.1     |
| С28—С27—Н27 | 119.8       | С18—С17—Н17 | 120.1     |
| N—C1—S2     | 121.8 (2)   | C18—C19—C14 | 120.6 (3) |
| N—C1—S1     | 132.6 (2)   | С18—С19—Н19 | 119.7     |
| S2—C1—S1    | 105.68 (15) | С14—С19—Н19 | 119.7     |
| C14—C15—C16 | 119.8 (3)   | C3—C4—C5    | 119.3 (4) |
| C14—C15—H15 | 120.1       | С3—С4—Н4    | 120.4     |
| С16—С15—Н15 | 120.1       | С5—С4—Н4    | 120.4     |
| C13—C8—C9   | 118.1 (3)   | C7—C2—C3    | 119.4 (3) |
| C13—C8—P1   | 121.4 (2)   | C7—C2—S3    | 117.5 (3) |
| C9—C8—P1    | 120.1 (2)   | C3—C2—S3    | 123.1 (3) |
| C37—C32—C33 | 118.7 (3)   | C41—C42—C43 | 120.5 (3) |
| C37—C32—P2  | 121.6 (2)   | C41—C42—H42 | 119.7     |
| C33—C32—P2  | 119.5 (2)   | C43—C42—H42 | 119.7     |
| C40—C39—C38 | 120.5 (3)   | C29—C30—C31 | 120.6 (3) |
| С40—С39—Н39 | 119.8       | С29—С30—Н30 | 119.7     |
| С38—С39—Н39 | 119.7       | С31—С30—Н30 | 119.7     |
| C43—C38—C39 | 118.5 (3)   | C23—C22—C21 | 121.0 (4) |
| C43—C38—P2  | 121.7 (2)   | C23—C22—H22 | 119.5     |
| C39—C38—P2  | 119.7 (2)   | C21—C22—H22 | 119.5     |
| C10—C9—C8   | 120.7 (3)   | C17—C18—C19 | 120.3 (4) |
| С10—С9—Н9   | 119.6       | C17—C18—H18 | 119.9     |
| С8—С9—Н9    | 119.6       | C19—C18—H18 | 119.9     |
| C20—C25—C24 | 120.3 (3)   | C2—C7—C6    | 119.6 (4) |
| C20—C25—H25 | 119.9       | С2—С7—Н7    | 120.2     |
| C24—C25—H25 | 119.9       | С6—С7—Н7    | 120.2     |
| C42—C43—C38 | 120.2 (3)   | C17—C16—C15 | 120.8 (3) |
| C42—C43—H43 | 119.9       | С17—С16—Н16 | 119.6     |
| C38—C43—H43 | 119.9       | С15—С16—Н16 | 119.6     |
| C42—C41—C40 | 119.6 (3)   | C6—C5—C4    | 120.4 (4) |
| C42—C41—H41 | 120.2       | С6—С5—Н5    | 119.8     |
| C40—C41—H41 | 120.2       | С4—С5—Н5    | 119.8     |
| C35—C36—C37 | 120.6 (3)   | C5—C6—C7    | 120.6 (4) |
| С35—С36—Н36 | 119.7       | C5—C6—Cl2   | 120.1 (4) |
| С37—С36—Н36 | 119.7       | C7—C6—Cl2   | 119.2 (4) |
| C25—C20—C21 | 118.6 (3)   | C22—C23—C24 | 120.1 (4) |
| C25—C20—P1  | 117.7 (2)   | С22—С23—Н23 | 119.9     |

| C21—C20—P1      | 123.7 (2)    | С24—С23—Н23     | 119.9      |
|-----------------|--------------|-----------------|------------|
| C34—C35—C36     | 119.8 (3)    | C10-C11-C12     | 119.8 (3)  |
| С34—С35—Н35     | 120.1        | C10-C11-H11     | 120.1      |
| С36—С35—Н35     | 120.1        | C12—C11—H11     | 120.1      |
| S1—Ni—P2—C26    | 78.94 (17)   | C26—P2—C38—C39  | 48.7 (3)   |
| S2—Ni—P2—C26    | 85.25 (10)   | C32—P2—C38—C39  | 156.6 (2)  |
| P1—Ni—P2—C26    | -94.30 (10)  | Ni—P2—C38—C39   | -80.7 (3)  |
| S1—Ni—P2—C38    | -155.86 (16) | C13—C8—C9—C10   | -0.9 (4)   |
| S2—Ni—P2—C38    | -149.54 (12) | P1C8C10         | -173.6 (2) |
| P1—Ni—P2—C38    | 30.90 (12)   | C39—C38—C43—C42 | -0.1 (5)   |
| S1—Ni—P2—C32    | -35.17 (19)  | P2—C38—C43—C42  | -179.3 (3) |
| S2—Ni—P2—C32    | -28.86 (11)  | C32—C37—C36—C35 | -0.6 (5)   |
| P1—Ni—P2—C32    | 151.58 (10)  | C24—C25—C20—C21 | 0.1 (4)    |
| S2—Ni—S1—C1     | -1.55 (9)    | C24—C25—C20—P1  | -179.3 (2) |
| P1—Ni—S1—C1     | 178.34 (9)   | C14—P1—C20—C25  | 163.2 (2)  |
| P2—Ni—S1—C1     | 4.93 (18)    | C8—P1—C20—C25   | -88.1 (2)  |
| S1—Ni—S2—C1     | 1.56 (10)    | Ni—P1—C20—C25   | 35.1 (3)   |
| P1—Ni—S2—C1     | 1.09 (19)    | C14—P1—C20—C21  | -16.1 (3)  |
| P2—Ni—S2—C1     | -176.99 (10) | C8—P1—C20—C21   | 92.6 (3)   |
| S1—Ni—P1—C14    | 103.14 (10)  | Ni—P1—C20—C21   | -144.2 (2) |
| S2—Ni—P1—C14    | 103.59 (18)  | C37—C36—C35—C34 | 0.6 (5)    |
| P2—Ni—P1—C14    | -78.38 (10)  | C25—C20—C21—C22 | -0.6 (5)   |
| S1—Ni—P1—C8     | -15.26 (11)  | P1—C20—C21—C22  | 178.7 (3)  |
| S2—Ni—P1—C8     | -14.8 (2)    | C36—C35—C34—C33 | 0.5 (5)    |
| P2—Ni—P1—C8     | 163.23 (11)  | C35—C34—C33—C32 | -1.6 (4)   |
| S1—Ni—P1—C20    | -132.72 (10) | C37—C32—C33—C34 | 1.6 (4)    |
| S2—Ni—P1—C20    | -132.27 (17) | P2-C32-C33-C34  | 176.0 (2)  |
| P2—Ni—P1—C20    | 45.76 (11)   | C38—C39—C40—C41 | 0.2 (5)    |
| O2—S3—N—C1      | -160.7 (2)   | C42—C41—C40—C39 | -0.1 (6)   |
| O1—S3—N—C1      | -30.4 (3)    | C9—C8—C13—C12   | -0.1 (5)   |
| C2—S3—N—C1      | 85.1 (3)     | P1-C8-C13-C12   | 172.5 (3)  |
| C38—P2—C26—C27  | -159.0 (2)   | C8—C13—C12—C11  | 0.9 (6)    |
| C32—P2—C26—C27  | 92.9 (2)     | C30—C29—C28—C27 | 1.5 (5)    |
| Ni—P2—C26—C27   | -24.0 (3)    | C26—C27—C28—C29 | -1.4 (5)   |
| C38—P2—C26—C31  | 26.1 (3)     | C27—C26—C31—C30 | 0.8 (5)    |
| C32—P2—C26—C31  | -82.1 (3)    | P2-C26-C31-C30  | 175.8 (3)  |
| Ni—P2—C26—C31   | 161.0 (2)    | C8—C9—C10—C11   | 1.2 (5)    |
| C8—P1—C14—C15   | 146.1 (2)    | C20-C25-C24-C23 | 0.4 (5)    |
| C20—P1—C14—C15  | -105.8 (2)   | C15-C14-C19-C18 | 0.8 (5)    |
| Ni—P1—C14—C15   | 22.5 (3)     | P1-C14-C19-C18  | -179.8 (3) |
| C8—P1—C14—C19   | -33.3 (3)    | C2—C3—C4—C5     | 2.5 (6)    |
| C20—P1—C14—C19  | 74.8 (3)     | Cl1—C3—C4—C5    | -177.4 (3) |
| Ni—P1—C14—C19   | -156.9 (2)   | C4—C3—C2—C7     | -2.9 (5)   |
| C31—C26—C27—C28 | 0.2 (4)      | Cl1—C3—C2—C7    | 176.9 (2)  |
| P2-C26-C27-C28  | -175.0 (2)   | C4—C3—C2—S3     | 175.2 (3)  |
| S3—N—C1—S2      | -178.96 (15) | Cl1—C3—C2—S3    | -5.0 (4)   |
| S3—N—C1—S1      | 0.3 (4)      | O2—S3—C2—C7     | 132.2 (3)  |
| Ni—S2—C1—N      | 177.4 (2)    | O1—S3—C2—C7     | 6.4 (3)    |
| Ni—S2—C1—S1     | -2.01 (12)   | N—S3—C2—C7      | -114.3 (2) |

| Ni—S1—C1—N      | -177.3 (3) | O2—S3—C2—C3     | -45.9 (3)  |
|-----------------|------------|-----------------|------------|
| Ni—S1—C1—S2     | 2.02 (12)  | O1—S3—C2—C3     | -171.8 (3) |
| C19—C14—C15—C16 | -2.2 (5)   | N—S3—C2—C3      | 67.6 (3)   |
| P1-C14-C15-C16  | 178.4 (2)  | C40—C41—C42—C43 | -0.1 (6)   |
| C14—P1—C8—C13   | 143.4 (3)  | C38—C43—C42—C41 | 0.2 (5)    |
| C20—P1—C8—C13   | 32.3 (3)   | C28—C29—C30—C31 | -0.6 (5)   |
| Ni—P1—C8—C13    | -92.1 (2)  | C26—C31—C30—C29 | -0.6 (5)   |
| C14—P1—C8—C9    | -44.1 (3)  | C20-C21-C22-C23 | 0.7 (6)    |
| C20—P1—C8—C9    | -155.2 (2) | C16—C17—C18—C19 | -0.8 (6)   |
| Ni—P1—C8—C9     | 80.4 (2)   | C14—C19—C18—C17 | 0.6 (6)    |
| C36—C37—C32—C33 | -0.5 (4)   | C3—C2—C7—C6     | 1.3 (5)    |
| C36—C37—C32—P2  | -174.8 (2) | S3—C2—C7—C6     | -176.9 (3) |
| C26—P2—C32—C37  | -0.5 (3)   | C18—C17—C16—C15 | -0.6 (6)   |
| C38—P2—C32—C37  | -108.4 (2) | C14-C15-C16-C17 | 2.1 (5)    |
| Ni—P2—C32—C37   | 119.9 (2)  | C3—C4—C5—C6     | -0.5 (6)   |
| C26—P2—C32—C33  | -174.7 (2) | C4—C5—C6—C7     | -1.1 (6)   |
| C38—P2—C32—C33  | 77.4 (2)   | C4—C5—C6—Cl2    | 178.8 (3)  |
| Ni—P2—C32—C33   | -54.4 (2)  | C2—C7—C6—C5     | 0.7 (6)    |
| C40—C39—C38—C43 | -0.1 (5)   | C2—C7—C6—Cl2    | -179.3 (3) |
| C40—C39—C38—P2  | 179.1 (3)  | C21—C22—C23—C24 | -0.2 (6)   |
| C26—P2—C38—C43  | -132.1 (3) | C25—C24—C23—C22 | -0.3 (6)   |
| C32—P2—C38—C43  | -24.2 (3)  | C9—C10—C11—C12  | -0.4 (6)   |
| Ni—P2—C38—C43   | 98.5 (2)   | C13-C12-C11-C10 | -0.6 (7)   |

Hydrogen-bond geometry (Å, °)

| D—H···A                         | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$ |
|---------------------------------|-------------|--------------|--------------|-------------------------------------|
| C36—H36…S1 <sup>i</sup>         | 0.93        | 2.8          | 3.641 (3)    | 151                                 |
| C34—H34…O1 <sup>ii</sup>        | 0.93        | 2.57         | 3.194 (5)    | 125                                 |
| C41—H41···O2 <sup>iii</sup>     | 0.93        | 2.48         | 3.197 (4)    | 134                                 |
| 0 = 1/2 = 1/2 = 1/2 = 1/2 = 1/2 | 1/2 (11) 1  | 1/2          |              |                                     |

Symmetry codes: (i) -x-1/2, y-1/2, z; (ii) -x, y-1/2, -z+1/2; (iii) x, -y+1/2, z-1/2.





